Hyperkaehler.info

the geography of compact irreducible holomorphic symplectic (or hyperkähler) varieties

Norm of the Riemann curvature tensor

Hitchin and Sawon computed in [MR1813238] the $\mathcal{L}^2$ norm of the Riemann curvature tensor $R$ of a hyperkähler manifold $X$ of (real) dimension $4k$: \begin{equation} \frac{1}{(192\pi^2k)^k}\frac{||R||^{2k}}{(\operatorname{vol} X)^{k-1}}=\int_X\mathrm{td}_X^{1/2} \end{equation}

dimension K3 K3[n]-type Kumn-type OG6 OG10
$\displaystyle\frac{(n+3)^n}{4^n n!}$ $\displaystyle\frac{(n+1)^{n+1}}{4^n n!}$
2 1
4 25/32
$\approx0.78125$
27/32
$\approx0.84375$
6 9/16
$\approx0.56250$
2/3
$\approx0.66667$
2/3
$\approx0.66667$
8 2401/6144
$\approx0.39079$
3125/6144
$\approx0.50863$
10 4/15
$\approx0.26667$
243/640
$\approx0.37969$
4/15
$\approx0.26667$
12 59049/327680
$\approx0.18020$
823543/2949120
$\approx0.27925$
14 15625/129024
$\approx0.12110$
64/315
$\approx0.20317$
16 214358881/2642411520
$\approx0.08112$
43046721/293601280
$\approx0.14662$
18 243/4480
$\approx0.05424$
1953125/18579456
$\approx0.10512$
20 137858491849/3805072588800
$\approx0.03623$
285311670611/3805072588800
$\approx0.07498$

References
MR1813238
Hitchin, Nigel and Sawon, Justin. "Curvature and characteristic numbers of hyper-hler manifolds." In: Duke Math. J. 106 (2001), pp. 599–615. doi:10.1215/S0012-7094-01-10637-6